Rakuten infoseek

辞書

空気【くうき】

ブリタニカ国際大百科事典 小項目事典

空気
くうき
air
地球表面を包んでいる気体。0℃,1気圧の乾燥空気の密度は 1.293 g/l 。 39kmの高さまで組成が分析されているが,水蒸気含有量を除けば,組成はほぼ一定である。その体積百万分率は次のとおり。窒素 780900,酸素 209500,アルゴン 9300,二酸化炭素 300,ネオン 18,ヘリウム 5.2,メタン 2.2,クリプトン1,亜酸化窒素 0.5,水素 0.5,キセノン 0.08,オゾン 0.01。

出典:ブリタニカ国際大百科事典 小項目事典
Copyright (c) 2014 Britannica Japan Co., Ltd. All rights reserved.
それぞれの記述は執筆時点でのもので、常に最新の内容であることを保証するものではありません。

デジタル大辞泉

くう‐き【空気】
地球を包む大気圏の下層部分を構成する無色透明な混合気体。高度数十キロまでは、水蒸気を除くと組成がほぼ一定で、体積比で窒素78.09、酸素20.95、アルゴン0.93、二酸化炭素0.03のほかネオンヘリウムなどを含む。乾燥空気1リットルの重さはセ氏零度、1気圧のとき1.293グラム。
その場の雰囲気。「職場の空気になじむ」「険悪な空気が流れる」「自由な空気を吸う」

出典:小学館
監修:松村明
編集委員:池上秋彦、金田弘、杉崎一雄、鈴木丹士郎、中嶋尚、林巨樹、飛田良文
編集協力:田中牧郎、曽根脩
(C)Shogakukan Inc.
それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。

栄養・生化学辞典

空気
 地表を覆う気体.もしくはその組成をもつ気体.

出典:朝倉書店
Copyright (C) 2009 Asakura Publishing Co., Ltd. All rights reserved.
それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。

世界大百科事典 第2版

くうき【空気 air】
地球をつつむ大気の厚さは,地上500~1000kmに及ぶといわれる。このうち地上8~18kmまでの対流圏と,その外側,地上50~60kmまでの成層圏の下部までは,高度の増加とともに大気の密度・圧力は減少していくけれども,その組成はほとんど変化しないとみてよい。この部分の大気を構成する気体を,ふつう空気と呼んでいる。空気は無色透明の液化しにくい気体で,その組成を表1に,またおもな性質を表2に示す。 このような組成の大気の存在は地球独特のもので,とくに酸素がきわめて多く,二酸化炭素がきわめて少ないことは,長年月にわたる植物の炭酸固定作用による酸素の蓄積と,海洋による二酸化炭素の吸収の結果と考えられる。

出典:株式会社平凡社
Copyright (c) Heibonsha Limited, Publishers, Tokyo. All rights reserved.

大辞林 第三版

くうき【空気】
〔air〕 地球を包む大気の下層部分を構成する無色透明の混合気体。高度80キロメートル 以下ではほぼ均質で、水蒸気を除いた乾燥空気の組成(体積)は、窒素78.09パーセント、酸素20.95パーセントのほか、アルゴン・二酸化炭素・ネオン・ヘリウム・クリプトン・キセノンなどを微量に含んでいる。
その場の状態や気分。雰囲気。また、社会や人々の間にみられるある傾向。 「気まずい-が流れる」 「険悪な-になる」 〔もともと漢籍にある語。「砲術語選」(1849年)にオランダ語 lugt の訳語として載る〕

出典:三省堂
(C) Sanseido Co.,Ltd. 編者:松村明 編 発行者:株式会社 三省堂 ※ 書籍版『大辞林第三版』の図表・付録は収録させておりません。 ※ それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。

日本大百科全書(ニッポニカ)

空気
くうき
air 英語 フランス語
Luftドイツ語
地球を包む大気の下層部分を構成している無色透明な気体をいう。大気は地上約1000キロメートルまで存在するといわれ、その最下部の対流圏(地上から約10~17キロメートル)、その上の成層圏(地上約48キロメートルまで)までは、いわゆる空気とよんで、地上から高くなるにつれて密度は減少していくが、その組成は変わらない。
 空気は歴史的に生成されたもので、空気がなければ、地表は太陽の激しい光、熱、宇宙線、宇宙塵(じん)などに直接さらされることになり、また炭酸同化も呼吸も窒素固定も行われず、生物は存在することもできない。さらに空中を音が伝わらず、物が燃えることもなく、大気圧や風や雨も存在しない。[中原勝儼]

性質

空気は混合気体で、主成分の酸素と窒素のほかに、少量の二酸化炭素およびアルゴンなどを含んでいる。そのほか水蒸気、二酸化硫黄(いおう)、一酸化炭素、アンモニア、二酸化窒素、オゾン、炭化水素などの気体、さらに塵埃(じんあい)、花粉、微生物、無機塩類などの微粉を含んでいるが、これらは時と所によって量が違う。最近は大量の化石燃料消費その他の影響で二酸化炭素の含有量が年々わずかずつ増大している。また大都市の空気中では自動車などの排出ガスその他によって窒素酸化物(いわゆるNOX)や硫黄酸化物(いわゆるSOX)の量が増大している。
 空気の組成は地上のどこでもほとんど変わらないから、古くは化合物と考えられたこともある。加圧下、冷却すると、37.2気圧、零下140.7℃で液体となる。液体空気を気化させると、成分の沸点が違うため、各成分を分離することができる。[中原勝儼]

重さを測る方法

乾燥空気1リットルは1.293グラム(0℃、1気圧)である。空気のおよその重さを測るには、栓をしたフラスコにゴム管をピンチコックで取り付け、真空ポンプで空気を抜き、その減じた重さを秤量(ひょうりょう)する。空気が入っているときと真空にしたときの重量の差がフラスコに入っていた空気の重量である。ついで水の中でコックを開いて、入る水の体積を測定する。これによってその体積の空気の重量がわかることになる。逆に、容器に空気入れなどで空気を押し込み、増した重さを測り、水中に倒立させたメスシリンダーに増量分の空気を導いて体積を知る方法もある。
 単に重さのあることを知る程度ならば、水を少量入れたフラスコを温めて、水蒸気とともに大部分の空気を追い出して栓をし、その重さを測ったのち、栓を開いて空気を入れ、再度重さを測ることによって確認できる。[中原勝儼]

空気の認識の変遷


古代
目で見ることのできない空気が物質であることは古くから認められていた。紀元前6世紀の古代ギリシアのアナクシメネスは「空気」を万物の根源とし、その希薄化と濃厚化によって火・水・土に変わると考え、エンペドクレスは「クレプシドラ(水汲(く)み用具)の実験」によって空気の物質性を証明した。前3世紀のストラトンは、中空の銅球を用いて空気の圧縮性と弾性を示し、空気が微小な分子とそれらの間の小さな空虚とからなることを主張した。ヘロンは、空気の熱膨張を利用した神殿の自動扉や蒸気タービンの玩具(がんぐ)を考案した。しかし古代社会では、これらが生産技術に応用されることはなかった。ローマ時代の医師ガレノスは、呼吸によって体内に入り、生命の維持と精神作用をつかさどる精気として「プネウマ」という概念を重視した。中国の思想においても「気」は重要な概念であったが、陰陽五行(いんようごぎょう)説を出ることなく、西洋におけるように物質として自然学の対象とはならなかった。[内田正夫]
重さと弾性の認識
近代科学の生まれつつあった17世紀には、真空の存在の証明と関連して空気の諸性質が研究された。
 トリチェリは、いわゆる「トリチェリの実験」において、ガラス管内の76センチメートルの水銀柱は大気の重さとのつり合いによって支えられている、と説明した(1643)。続いてパスカルが、種々の思考実験と論証によってこれを証明し、流体の平衡として一般化した。彼の指示で実施された「ピュイ・ド・ドーム山頂の実験」(1648年9月19日)は、最初の高所気圧測定であった(パスカルの実験)。一方、ゲーリケは1650年ごろ、空気ポンプを製作して真空状態をつくりだし、「マクデブルクの半球実験」をはじめ、大気圧の大きさを示すさまざまな実験を行った。また真空容器内での音・火・小動物などの挙動を調べ、音の伝播(でんぱ)、燃焼、動物の生存に空気が必要なことを証明した。ボイルはゲーリケの実験を追試して、さらに巧みな実験により、空気の圧力と体積との間の「ボイルの法則」をみいだした(1662)。空気の弾性流体としての本性が明瞭(めいりょう)に認識されたのである。
 空気の熱膨張については、その体積が温度に比例することが、1787年シャルルによって発見された。その膨張率はゲイ・リュサック、ドルトンらによって研究されたが、ルニョーの精密な研究により、すべての気体の熱膨張率が同一ではないこと、ボイルの法則も厳密には成り立たないことが明らかになった(1853)。
 17世紀以来、物理学者は気体を粒子状のものと考えてはきたが、具体的な描像はたいへんあいまいであった。動的な気体像である気体分子運動論は、熱力学の発展を背景として、19世紀なかば過ぎに、マクスウェルらによってようやく成立され、ボルツマンによって一般的な統計力学へと発展させられた。[内田正夫]
化学的本性の認識
燃焼と呼吸に空気が必要なことは古くから知られていた。それをはっきりと証明したのがゲーリケとボイルの実験であった。イギリスのJ・メーヨーは、空気が燃焼と呼吸を支える、ある活性な成分を含んでいることを知り、これが硝石に類似した作用をもつことから「硝空気精」とよんだ(1674)。これは酸素にあたるが、そのことはただちに理解されたわけではなく、メーヨーの著作は100年間余り埋もれてしまった。18世紀には、シュタールの唱えたフロギストン説が有力となり、燃焼とは可燃物からフロギストンが逃げていく過程であると考えられた。
 植物が空気からも栄養をとることをみいだした18世紀初めのヘールズは、水上置換法を発明してさまざまな気体を捕集したが、彼はそれらが化学的に異なった物質だとは考えず、たまたま不純物が混じった空気であるとみなした。初めて普通空気とは別種の化学物質として気体を認識したのはJ・ブラックであった。彼は石灰石の中に「固定された空気」、すなわち二酸化炭素を発見し(1756)、これに続いてキャベンディッシュ、J・プリーストリーらによって水素や酸化窒素が発見され、18世紀後半は気体化学の時代となる。D・ラザフォードは空気中の窒素が一つの気体であることを認め(1772)、シェーレとプリーストリーとがそれぞれ1771年と1774年に独立に酸素を発見した。フロギストン説を打ち倒して、酸素の化学的本性を正しく理解したのはラボアジエであった。彼は、この気体が燃焼と金属灰化において可燃物や金属と結合する空気の「純粋な成分」であることを証明し、普通空気が酸素と窒素とからなることを明らかにし、また呼吸も燃焼と同じく食物の酸化過程であると説明した。
 空気の組成が地点や高度にかかわらず一定であることは、ゲイ・リュサックらによって確かめられた(1804)。さらに空気の成分として少量の希ガスが含まれていることがレイリーとW・ラムジー(ラムゼー)によって発見され、アルゴンと命名された(1894)。まもなく液体空気の分留によりクリプトン、ネオン、キセノンも発見された。
 1827年ごろファラデーはいくつかの気体を液化した。液化が困難なため永久気体といわれた酸素や窒素は、1877年にカイユテとピクテRaoul Pictet(1846―1929)が液化に成功、1895年C・P・G・R・von・リンデは液体空気を大規模に製造した。液体空気の分留によって製造された窒素と酸素は、それぞれアンモニア合成や冶金(やきん)などに用いられ、20世紀以降の化学工業にとって重要な原料の一つとなっている。また19世紀後半以降、真空ポンプや圧縮機などの空気機械が次々に改良され、多方面の技術に応用されている。[内田正夫]
『江沢洋著『だれが原子をみたか』新装版(1998・岩波書店)』

出典:小学館 日本大百科全書(ニッポニカ)
(C)Shogakukan Inc.
それぞれの解説は執筆時点のもので、常に最新の内容であることを保証するものではありません。

精選版 日本国語大辞典

くう‐き【空気】
〘名〙 (Lugt の訳語)
① 地球の大気の下層部分を構成する無色、透明の気体。酸素と窒素を約一対四の割合で主成分とする混合気体で、少量のアルゴン、ヘリウムなどの不活性ガスや炭酸ガスなどを含む。また、時期、場所により、水蒸気、亜硫酸ガス一酸化炭素などの気体や、塵埃(じんあい)、塩化物、微生物、花粉、宇宙塵、火山放出物などの固形微粒子を含むこともある。〔砲術語選(1849)〕
※小学読本(1873)〈田中義廉〉四「凡地面に生活するものは、空気を呼吸し」
② あたりの気分や状態。また、ある生活の場の環境や習慣をあらわす。雰囲気。
日本開化小史(1877‐82)〈田口卯吉〉一「文弱の空気の中に人と成り給ひ」
[語誌](1)蘭学者が考案した訳語。その後、「和英語林集成」や明治初期の独和辞書を通じて一般化した。
(2)中国では宋の蘇軾の文章に「空気」の用例があるが、「元気、元始之気」という道教の意味であった。

出典:精選版 日本国語大辞典
(C)Shogakukan Inc.
それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。

化学辞典 第2版

空気
クウキ
air

地球の大気の下層成分を構成する気体混合物.場所,時間により組成は多少異なり,とくに水蒸気の含有量は変化するが,乾燥した空気の平均組成はほぼ一定で,これを下表に示す.

このように,空気は酸素と窒素が主成分であるから,これらの気体の液化温度以下にすれば液体空気とすることができる.これを分留して工業的に窒素,酸素を単離する.大気には人類の活動に伴い,地域によって多くの微量成分が含まれるようになった.そのなかで人体などに有害な成分(SO2,CO,NOx,CnHmなど)を含む大気汚染が起こり,問題となっている.

出典:森北出版「化学辞典(第2版)」
東京工業大学名誉教授理博 吉村 壽次(編集代表)
信州大学元教授理博 梅本 喜三郎(編集)
東京大学名誉教授理博 大内 昭(編集)
東京大学名誉教授工博 奥居 徳昌(編集)
東京工業大学名誉教授理博 海津 洋行(編集)
東京工業大学元教授学術博 梶 雅範(編集)
東京大学名誉教授理博 小林 啓二(編集)
東京工業大学名誉教授 工博佐藤 伸(編集)
東京大学名誉教授理博 西川 勝(編集)
東京大学名誉教授理博 野村 祐次郎(編集)
東京工業大学名誉教授理博 橋本 弘信(編集)
東京工業大学教授理博 広瀬 茂久(編集)
東京工業大学名誉教授工博 丸山 俊夫(編集)
東京工業大学名誉教授工博 八嶋 建明(編集)
東京工業大学名誉教授理博 脇原 將孝(編集)

Copyright © MORIKITA PUBLISHING Co., Ltd. All rights reserved.
それぞれの項目は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。

空気」の用語解説はコトバンクが提供しています。

空気の関連情報

他サービスで検索

(C)The Asahi Shimbun Company /VOYAGE MARKETING, Inc. All rights reserved.
No reproduction or republication without written permission.