Rakuten infoseek

辞書

液体ヘリウム【えきたいヘリウム】

ブリタニカ国際大百科事典 小項目事典

液体ヘリウム
えきたいヘリウム
liquid helium
ヘリウムには安定した同位体としてヘリウム4とヘリウム3があり,液体ヘリウム4,液体ヘリウム3,およびその混合液が存在する。狭義には液体ヘリウムは液体ヘリウム4のことをいう。低温ではヘリウム4はボース液体,ヘリウム3はフェルミ液体であり,両者とも典型的な量子液体である。 1908年 H.カマーリング・オネスが初めてヘリウム4の液化に成功した。液体ヘリウム4は臨界点 (図の点C) が温度 5.20K,圧力 2.26気圧で,1気圧下の沸点が 4.2K,絶対零度まで液体のままである。固体にするには 25気圧以上の加圧が必要である。液相はヘリウムIとヘリウム IIの2相から成る。図の点A (2.17K,0.0497気圧) と点B (1.77K,29.7気圧) を結ぶ2相の界線は λ 線と呼ばれる。ヘリウムIは通常の液体の相であるが,ヘリウム IIは超流動相であって,非常に狭いすきまにも流れ込み,また熱伝導がきわめてよい。液体ヘリウム4は極低温を得る寒剤として利用され,減圧して蒸発熱を除いてやれば 1K程度までの温度が得られるので,超伝導磁石の冷却などに使われる。一方,液体ヘリウム3は臨界点 (図の点D) が温度 3.32K,圧力 1.15気圧で,1気圧下での沸点が 3.2Kで,ヘリウム4と同様に絶対零度まで液体である。 30気圧以上に加圧すれば固化する。融解曲線に沿って圧力が最小の図の点E (0.32K,28.9気圧) が現れる。 2.7mK以下の超低温では,超流動状態になる。液体ヘリウム3も寒剤として用いられる。液体ヘリウム4で 1K程度まで冷却し,それ以下は液体ヘリウム3を減圧,蒸発させて 0.3K程度までの低温が得られる。さらにヘリウム4とヘリウム3の混合液を用いた希釈冷却法で 2mK近くまで冷却できる。 (→超流動ヘリウム3 , 超流動ヘリウム4 )  

出典:ブリタニカ国際大百科事典 小項目事典
Copyright (c) 2014 Britannica Japan Co., Ltd. All rights reserved.
それぞれの記述は執筆時点でのもので、常に最新の内容であることを保証するものではありません。

デジタル大辞泉

えきたい‐ヘリウム【液体ヘリウム】
液化したヘリウム。ヘリウムはすべての物質中沸点が最低で、セ氏零下268.9度で得られる。極低温冷却剤として広く使用。また超流動などの特異な性質を示すため、物性論的な研究の対象となる。

出典:小学館
監修:松村明
編集委員:池上秋彦、金田弘、杉崎一雄、鈴木丹士郎、中嶋尚、林巨樹、飛田良文
編集協力:田中牧郎、曽根脩
(C)Shogakukan Inc.
それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。

世界大百科事典 第2版

えきたいヘリウム【液体ヘリウム liquid helium】
ヘリウムは元素の中で最も沸点が低いため,液化されたのは気体の中の最後であり,1908年,カメルリン・オンネスによって初めて液体ヘリウムが得られた。ヘリウムは原子が閉殻構造であるため原子間の引力がきわめて小さく,また原子の質量が小さいために量子力学的零点振動が大きい。このため,沸点が低いばかりでなく,高い圧力をかけないかぎり絶対零度まで固化することはない。ヘリウムには,天然に存在するヘリウム44Heと,核反応を利用してリチウムLiから作られる同位体のヘリウム33Heとがあり,1気圧での沸点は4Heが4.21K,3Heが3.19Kで,また固化に必要な圧力はそれぞれ25.0気圧と28.9気圧である。

出典:株式会社平凡社
Copyright (c) Heibonsha Limited, Publishers, Tokyo. All rights reserved.

大辞林 第三版

えきたいヘリウム【液体ヘリウム】
液化したヘリウム。沸点摂氏マイナス268.9度。ヘリウムⅠと呼ばれる状態とそれより低温のヘリウムⅡと呼ばれる状態とがあり、後者は微細なすき間を無抵抗で流れる(超流動性)など通常の液体と異なった性質を示す。極低温をつくるための冷媒として用いる。

出典:三省堂
(C) Sanseido Co.,Ltd. 編者:松村明 編 発行者:株式会社 三省堂 ※ 書籍版『大辞林第三版』の図表・付録は収録させておりません。 ※ それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。

日本大百科全書(ニッポニカ)

液体ヘリウム
えきたいへりうむ
liquid helium
液体状態のヘリウムのこと。ヘリウムは希ガス元素の一種で、常温では気体である。ほかの物質に比べてとくに液化しにくく、絶対温度5.2K以下の低温にしなければ液化しない。ヘリウムの液化に初めて成功したのは、オランダの物理学者カマーリン・オネスであった(1908)。現在では、液体ヘリウムは数K以下の極低温を得るための寒剤として広く用いられている。
 液体ヘリウムは普通の液体ではみられない種々の特異な性質を示す。普通の液体は低温にすれば固体になるが、ヘリウムは低圧では絶対零度まで液体のままである。固体にするには、絶対零度では25気圧以上の圧力をかけなければならない。また、液体ヘリウムを冷却すると2.2Kで突然その性質が変わり、それ以下の極低温でまったく粘性のない特別な状態になる。粘性がないので、普通の液体は通ることのできない細い管の中も、抵抗を受けずに流れる。この現象を液体ヘリウムの超流動という。
 希ガス元素の原子は化学結合をせず、気体や液体の状態では個々の原子がそのまま動き回っている。物質が低温で液体になるのは、物質分子の間に引力が働くためであるが、ヘリウム原子間に働く引力はほかの物質の場合に比べて非常に弱い。ヘリウムが液化しにくいのはそのためである。また、ヘリウムの原子は水素に次いで軽い。量子力学の不確定性原理によると、ミクロな粒子では位置と運動量が同時に確定した値をとることができない。その効果は軽い粒子ほど著しい。固体は原子が規則正しい配置にほぼ静止した状態である。ヘリウムの原子は軽いために不確定性原理の効果が強く働き、定まった位置に静止することができない。このためヘリウムは絶対零度まで固体にならないのである。
 天然に存在するヘリウムの大半を占める同位体(アイソトープ)は4Heで、その原子は偶数個のフェルミ粒子(陽子2個、中性子2個、電子2個)からなり、ボース粒子としてふるまう。粒子間に力の働かないボース粒子の集団では、低温でボース‐アインシュタイン凝縮がおこり、絶対零度に近づくとともに、全粒子がもっともエネルギーの低い一つの量子力学的な状態に集まる。液体ヘリウムでは4He原子の間に力が働くが、このような場合にも低温ではマクロな数の粒子が一つの状態に集まり、一種のボース‐アインシュタイン凝縮がおこる。超流動はその結果として生じる、マクロな量子力学的現象である。
 ほかの同位体としては、3Heがある。3Heの原子は奇数個のフェルミ粒子(陽子2個、中性子1個、電子2個)からなり、フェルミ粒子としてふるまう。したがって、3Heだけの液体ヘリウムをつくると、1K程度の低温にしても普通の液体ヘリウムのようには超流動を示さない。しかし、比熱などの性質には原子がフェルミ粒子であることによる量子効果が現れる。このように、4Heや3Heの液体は量子効果によって普通の液体と著しく異なる性質を示すので、量子液体とよばれる。
 1972年、3Heの液体もさらに冷却すると、0.003K以下の超低温で超流動になることが発見された。これは、金属の電子が超伝導状態になる場合と同じように、3Heの原子が2個ずつ対になってボース‐アインシュタイン凝縮をおこしたことによる現象と考えられる。[長岡洋介]
『メンデルスゾーン著、大島恵一訳『絶対零度への挑戦』(1971・講談社) ▽中嶋貞雄著『量子の世界――極低温の物理』(1975・東京大学出版会)』

出典:小学館 日本大百科全書(ニッポニカ)
(C)Shogakukan Inc.
それぞれの解説は執筆時点のもので、常に最新の内容であることを保証するものではありません。

精選版 日本国語大辞典

えきたい‐ヘリウム【液体ヘリウム】
〘名〙 (ヘリウムはhelium) ヘリウムガスを冷却して液化したもの。一九〇八年、オランダのカメルリン=オンネスが初めて成功。絶対温度の二度を境として異なった性質を示し、極低温における諸実験に用いられる。

出典:精選版 日本国語大辞典
(C)Shogakukan Inc.
それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。

化学辞典 第2版

液体ヘリウム
エキタイヘリウム
liquid helium

1908年,H. Kamerlingh-Onnes(カマリング-オンネス)がはじめてヘリウムの液化に成功した.沸点4.215 K(-268.935 ℃).密度0.1249 g cm-3(沸点),蒸発熱84 J mol-1(沸点).臨界点5.20 K(-267.95 ℃),0.2274 MPa(2.244 atm),17.40 mol L-1(0.0696 g cm-3).これらの数値からわかるように,ヘリウムはもっとも液化しにくい物質で,0 K 付近でも常圧では液体である唯一の例である.Heの沸点付近の状態図は,概念的には図のようになっていて,三重点が存在しないこと,液相に2相あることなど,非常に特異的な性質を示す.分子間力がきわめて弱いため,0 K 付近でも2.5 MPa(約25 atm)まで加圧しないと固体にならない.2液相(HeⅠとHeⅡ)の境界線はλ線とよばれ,蒸気圧曲線上の0.00419 MPa,2.173 K(λ点)と融点曲線上の3.003 MPa(29.64 atm),1.760 K を結ぶ線である.HeⅡは通常の液体He成分と全原子が基底状態にある(ボース-アインシュタイン凝縮)超流動液体成分の混合系とみられ,熱伝導率が常温の鋼の約200倍,毛管中をほとんど抵抗なしに流れ(超流動),器壁を薄層をなしてはい上がるなど,異常なふるまいを示す.Heは99.999863(3)%4Heからなるので,これらの特異な性質は4Heのものであるが,液体3Heは4Heと異なった性質を示す.そのため,3.8 K 以下で3Heと4Heは自発的に分離する.3Heの沸点は3.195 K で,3.4 MPa 以下では固化しない.4Heの核スピンは0でボソンであるが,3Heの核スピンが1/2で,フェルミオンであるから超流動は示さないと思われていたが,1971年にD. Osheroff,D. Lee,R. Richardson(1996年,ノーベル物理学賞を受賞)が,0.0025 K で超流動になることを発見した.絶対0度付近で2原子が対をつくってボソンになるためと説明される.

出典:森北出版「化学辞典(第2版)」
東京工業大学名誉教授理博 吉村 壽次(編集代表)
信州大学元教授理博 梅本 喜三郎(編集)
東京大学名誉教授理博 大内 昭(編集)
東京大学名誉教授工博 奥居 徳昌(編集)
東京工業大学名誉教授理博 海津 洋行(編集)
東京工業大学元教授学術博 梶 雅範(編集)
東京大学名誉教授理博 小林 啓二(編集)
東京工業大学名誉教授 工博佐藤 伸(編集)
東京大学名誉教授理博 西川 勝(編集)
東京大学名誉教授理博 野村 祐次郎(編集)
東京工業大学名誉教授理博 橋本 弘信(編集)
東京工業大学教授理博 広瀬 茂久(編集)
東京工業大学名誉教授工博 丸山 俊夫(編集)
東京工業大学名誉教授工博 八嶋 建明(編集)
東京工業大学名誉教授理博 脇原 將孝(編集)

Copyright © MORIKITA PUBLISHING Co., Ltd. All rights reserved.
それぞれの項目は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。

液体ヘリウム」の用語解説はコトバンクが提供しています。

液体ヘリウムの関連情報

他サービスで検索

(C)The Asahi Shimbun Company /VOYAGE MARKETING, Inc. All rights reserved.
No reproduction or republication without written permission.