Rakuten infoseek

辞書

対称【たいしょう】

ブリタニカ国際大百科事典 小項目事典

対称
たいしょう
symmetry
幾何学的図形物体の形が,一つののまわりにある角度だけ回転したときに,もとの図形に一致することを回転対称,また一つの直線に関して折重ねたときに一致することを線対称 (左右対称はその一例) などという。数学関数変数の入替えや符号の変更を行なったときに不変ならば,その変換について対称であるという。形の対称性は美術や建築における重要な要素として用いられ,また自然科学分野においては分類や法則性の把握に利用されてきた。関数の対称性は数学はもとより,物理学などにおいても基本的重要さをもって取扱われてきた。結晶分子の構造,粒子系のハミルトニアン波動関数の対称性など多くの例があげられる。対称性を取扱う数学的手段としては群論が有効である。

出典:ブリタニカ国際大百科事典 小項目事典
Copyright (c) 2014 Britannica Japan Co., Ltd. All rights reserved.
それぞれの記述は執筆時点でのもので、常に最新の内容であることを保証するものではありません。

デジタル大辞泉

たい‐しょう【対称】
ものとものとが互いに対応しながらつりあいを保っていること。「左右対称
二つの図形が、点・線・面などについて互いに向き合う位置関係にあること。それぞれ点対称線対称面対称とよぶ。シンメトリー
結晶面の間の規則正しい関係の一。結晶面のある面による鏡像、またはそれをある軸のまわりに回転させたものが、他の結晶面に一致する性質。
二人称

出典:小学館
監修:松村明
編集委員:池上秋彦、金田弘、杉崎一雄、鈴木丹士郎、中嶋尚、林巨樹、飛田良文
編集協力:田中牧郎、曽根脩
(C)Shogakukan Inc.
それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。

世界大百科事典 第2版

たいしょう【対称 symmetry】
平面上または空間内に定点Oがあるとき,平面上または空間内の各点Pに対し,線分POの延長上にPO=OP′となる点P′をとって,PをP′にうつす対応を考える。この対応をOを対称の中心とする対称変換呼び,対応する2点P,P′をOに関する対称点と呼ぶ。また,この変換で図形Fが図形F′にうつるとき,FとF′はOに関して点対称であると呼び,とくにF=F′のときFをOに関して点対称な図形という(図a)。例えば,はそれらの中心に関して,平行四辺形や平行六面体は対角線交点に関して点対称な図形である。

出典:株式会社平凡社
Copyright (c) Heibonsha Limited, Publishers, Tokyo. All rights reserved.

大辞林 第三版

たいしょう【対称】
互いに対応してつりあうこと。相称。
文法 二人称に同じ。
symmetry
(点対称)二点 P 、 Q が点 O に関して対称とは、この二点を結ぶ線分 PQ が O によって二等分されること。すなわち、 P 、 Q は O を通る一つの直線上にあって、 O に関して反対側で、 O から等距離にあること。点 O を対称の中心という。
(線対称)二点 P 、 Q が直線 l に関して対称とは、線分 PQ が l によって垂直に二等分されること。 l を対称軸という。
(面対称)空間の二点 P 、 Q が平面 α に関して対称とは、線分 PQ が α によって垂直に二等分されること。 α を対称面という。
(対称な図形)二点 P 、 Q が点 O に関して対称な時、 Q を O に関する P の対称点といい、図形 F の点の、 O に関する対称点全体のつくる図形を、 O に関して F と対称な図形という。特に、図形 F の任意の点の、 O に関する対称点がまた F の点である時、図形 F は点 O に関し対称であるという。線対称、面対称についても同様の言い方をする。平面図形の場合には、点 O に関して対称とは、 O を中心として180度回転すれば重なることであり、直線 l に関して対称とは、 l を折り目として折り返した時、重なることである。
結晶で、ある直線上の一点、または一つの平面を隔てて回転・反射・逆転・回転反射などの操作を施しても、前と同じ面・頂点、稜などに一致すること。

出典:三省堂
(C) Sanseido Co.,Ltd. 編者:松村明 編 発行者:株式会社 三省堂 ※ 書籍版『大辞林第三版』の図表・付録は収録させておりません。 ※ それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。

日本大百科全書(ニッポニカ)

対称
たいしょう
一定点に関して2点の中点がその定点であるとき、その2点を定点に関して互いに点対称であるという。一定直線に関して2点の垂直二等分線がその定直線と一致するとき、その2点は定直線に関して互いに線対称であるという。また、一定平面に関して2点の垂直二等分面がその定平面と一致するとき、その2点は定平面に関して互いに面対称であるという(図A)。それぞれの場合、2点の一方を他の対称点という。[柴田敏男]

平面図形の対称

一つの平面図形を一定点の周りにα度回転してできる図形を、初めの図形にα度回転対称な図形といい、その定点を回転対称の中心という(図B)。180度回転対称な二つの図形はその中心に関して点対称であるという。一つの図形の一定直線に関する対称点をとってできる図形を、初めの図形に線対称な図形といい、その定直線を線対称の軸という。線対称な二つの図形の対応する2点の垂直二等分線は、線対称の軸と一致する。回転対称では図形の向き(対応点を順次回る向き)は変わらないが、線対称では図形の向きが逆になる。回転対称や線対称になるようにする操作を回転対称移動、線対称移動という。平面でこれらの移動を考えると、回転対称ではその中心は動かない。線対称ではその軸上の点はすべて不動である。平面で図形の大きさを変えない移動はすべていくつかの線対称移動の繰り返しで求められる。たとえば平行移動は、二つの平行線を軸とする線対称移動の繰り返しであり、回転対称移動は、その中心を通る二つの直線を軸とする線対称移動の繰り返しである。
 一つの平面図形がα度回転によって自分自身に重なるとき、その図形をα度回転対称な図形といい、回転の中心をその図形の回転対称の中心という。図Bにあるような寺院の記号は90度回転対称な図形である。一つの図形が線対称移動により自分自身に重なるとき、その図形を線対称な図形といい、線対称の軸をその図形の対称軸という。二等辺三角形は、底辺の垂直二等分線を軸とする線対称な図形である。正多角形は回転対称かつ線対称な図形である。[柴田敏男]

立体図形の対称

一つの立体図形を一定直線の周りにα度回転してできる図形を初めの図形にα度回転対称な図形といい、その定直線を回転対称の軸という(図C)。一つの図形の一定平面に関する対称点をとってできる図形を、初めの図形に面対称な図形といい、その定平面を対称面あるいは鏡映面という。面対称な二つの図形の対応する2点の垂直二等分面は対称面と一致する。空間においても回転対称や面対称の移動を考えることができる。また、一つの図形の一定点に関する対称点をとってできる図形を、初めの図形に点対称な図形といい、その中心を点対称の中心というが、これは、初めの図形に三つの面対称移動を繰り返し施した結果になっている。[柴田敏男]

出典:小学館 日本大百科全書(ニッポニカ)
(C)Shogakukan Inc.
それぞれの解説は執筆時点のもので、常に最新の内容であることを保証するものではありません。

精選版 日本国語大辞典

たい‐しょう【対称】
〘名〙
① 数学で、点対称、線対称、面対称の総称。〔数学ニ用ヰル辞ノ英和対訳字書(1889)〕
③ 物理学で、結晶面の間の規則正しい関係の一つ。結晶面のある面による鏡像、またはそれをある軸のまわりに回転させたものが、他の結晶面に一致する性質。〔稿本化学語彙(1900)〕
④ (━する) 対応させて称すること。
※地唄(1956)〈有吉佐和子〉「舞い手を立方というに対称して、地方と呼ばれる演奏者の立場にいても」
⑤ 互いに対応しながらつりあうこと。また、ふさわしいこと。かなうこと。相称。

出典:精選版 日本国語大辞典
(C)Shogakukan Inc.
それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。

化学辞典 第2版

対称
タイショウ
symmetry

図形にある操作をほどこしたときに,操作の前後で図形が完全に互いに重なる場合にこの操作を対称操作とよび,この図形は対称であるという.二つの対称操作を引き続いて行ったものは,やはりある対称操作であって,対称操作の集合は群をつくり,それを対称群とよぶ.結晶や分子の形に関しては単位操作(何もしないこと),回転,回反(反転・鏡映を含む),並進ならびにそれらを組み合わせたものが対称操作となりうる.ある対称操作を定義するために記載上必要な点,軸,面またはその集合を対称要素または対称の要素という.対称要素には,独立した分子の場合には,対称心回転軸回反軸または回映軸,および対称面があり,結晶の場合には,このほからせん軸映進面空間格子がある.なお,より一般的には,任意個の独立変数 xi の関数f(xi)が定義されていて,xi の全部または一部にある変換や交換をほどこしたときに,関数値が変換・交換前と比較して同一の値または同一の主値をとる場合に,f(xi)はこの関数の変換や交換に関して対称であるといい,変換などによって符号のみが変わる場合を反対称であるという.物体の場合でも,双極子や波動関数の分布については,反対称の対称要素や変換を考えることができる.誘電性,圧電性などの物性の記述には対称の概念が不可欠である.

出典:森北出版「化学辞典(第2版)」
東京工業大学名誉教授理博 吉村 壽次(編集代表)
信州大学元教授理博 梅本 喜三郎(編集)
東京大学名誉教授理博 大内 昭(編集)
東京大学名誉教授工博 奥居 徳昌(編集)
東京工業大学名誉教授理博 海津 洋行(編集)
東京工業大学元教授学術博 梶 雅範(編集)
東京大学名誉教授理博 小林 啓二(編集)
東京工業大学名誉教授 工博佐藤 伸(編集)
東京大学名誉教授理博 西川 勝(編集)
東京大学名誉教授理博 野村 祐次郎(編集)
東京工業大学名誉教授理博 橋本 弘信(編集)
東京工業大学教授理博 広瀬 茂久(編集)
東京工業大学名誉教授工博 丸山 俊夫(編集)
東京工業大学名誉教授工博 八嶋 建明(編集)
東京工業大学名誉教授理博 脇原 將孝(編集)

Copyright © MORIKITA PUBLISHING Co., Ltd. All rights reserved.
それぞれの項目は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。

対称」の用語解説はコトバンクが提供しています。

対称の関連情報

他サービスで検索

(C)The Asahi Shimbun Company /VOYAGE MARKETING, Inc. All rights reserved.
No reproduction or republication without written permission.