Rakuten infoseek

辞書

体積【たいせき】

ブリタニカ国際大百科事典 小項目事典

体積
たいせき
volume
空間において面によって囲まれた領域の広がりを表わす量。立体の体積は,立方体の体積をもとにしてはかれるが,一般には積分で考えなければならない。 (1) x 軸に垂直な平面による切り口の面積が x の関数 f(x) で表わされるような立体の2平面 xaxb の間にはさまれた部分の体積 V は,直交座標を用いると
で与えられる。 (2) xy 平面上の曲線 yf(x) と2直線 xaxb および x 軸に囲まれた部分が,x 軸のまわりに回転してできる回転体の体積 V
である。 (3) 3次元空間において,閉曲面によって囲まれた領域 D の体積 V は,直交座標を用いて
で与えられる。

出典:ブリタニカ国際大百科事典 小項目事典
Copyright (c) 2014 Britannica Japan Co., Ltd. All rights reserved.
それぞれの記述は執筆時点でのもので、常に最新の内容であることを保証するものではありません。

デジタル大辞泉

たい‐せき【体積】
立体が空間で占める大きさ。

出典:小学館
監修:松村明
編集委員:池上秋彦、金田弘、杉崎一雄、鈴木丹士郎、中嶋尚、林巨樹、飛田良文
編集協力:田中牧郎、曽根脩
(C)Shogakukan Inc.
それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。

世界大百科事典 第2版

たいせき【体積 volume】
空間の部分を囲む図形の大きさを,単位の長さをもつ線分を1辺とする立方体の大きさを基準として測ったときの数値が,その図形の体積であると通常は説明されているが,図形の大きさについては何も述べられていないので,この説明をもって体積の定義とするのは無理である。そこで数学では積分を用いて体積を定義する。すなわち,空間の有限の範囲内に集合Kがあるとき,Kを含む直方体Iをとって,Iの点Pに対し,PKに属せばφ(P)=1,そうでなければφ(P)=0として関数φ(P)を定義し,この関数がI上で積分可能ならばKは体積確定であるといい,その値をKの体積という。

出典:株式会社平凡社
Copyright (c) Heibonsha Limited, Publishers, Tokyo. All rights reserved.

大辞林 第三版

たいせき【体積】
立体が占める空間の大きさ。

出典:三省堂
(C) Sanseido Co.,Ltd. 編者:松村明 編 発行者:株式会社 三省堂 ※ 書籍版『大辞林第三版』の図表・付録は収録させておりません。 ※ それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。

日本大百科全書(ニッポニカ)

体積
たいせき
立体が占める空間の大きさのこと。立体Dの体積というのは、一辺の長さ1の立方体の体積を1として、Dがそのいくつ分に当たるかを示すものである。体積の計算の原理は次のようである。〔1〕二つの立体D1、D2をあわせてできる立体の体積は、D1、D2の体積の和に等しい。〔2〕D2がD1の一部分のとき、D2の体積はD1の体積より大きくない。〔3〕合同な二つの立体の体積は等しい。[栗田 稔]

出典:小学館 日本大百科全書(ニッポニカ)
(C)Shogakukan Inc.
それぞれの解説は執筆時点のもので、常に最新の内容であることを保証するものではありません。

精選版 日本国語大辞典

たい‐せき【体積】
〘名〙 立体が空間で占める部分の大きさ。〔数学ニ用ヰル辞ノ英和対訳字書(1889)〕

出典:精選版 日本国語大辞典
(C)Shogakukan Inc.
それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。

体積」の用語解説はコトバンクが提供しています。

体積の関連情報

他サービスで検索

「体積」のスポンサー検索

(C)The Asahi Shimbun Company /VOYAGE GROUP, Inc. All rights reserved.
No reproduction or republication without written permission.