Rakuten infoseek

辞書

ブール代数【ぶーる代すう】

デジタル大辞泉

ブール‐だいすう【ブール代数】
論理学の命題を記号化し、代数学を使って展開したもの。英国の数学者ブール創始

出典:小学館
監修:松村明
編集委員:池上秋彦、金田弘、杉崎一雄、鈴木丹士郎、中嶋尚、林巨樹、飛田良文
編集協力:田中牧郎、曽根脩
(C)Shogakukan Inc.
それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。

世界大百科事典 第2版

ブールだいすう【ブール代数 Boolean algebra】
G.ブール論理計算のために導入した概念であり,今日では,またはことばで述べられるのがふつうである。まず論理計算との関連を見よう。一つの集合Mの元について述べられた条件の集りLについて,条件xを満たすMの元の集合をMxで表し,MxMyのときxyがあると考えることにする。このとき,〈xかつy〉を満たすMの元の集合はMxMyであるから,〈xかつy〉をxyで表すことにする。同様の理由で,〈xまたはy〉をxyで表す。

出典:株式会社平凡社
Copyright (c) Heibonsha Limited, Publishers, Tokyo. All rights reserved.

大辞林 第三版

ブールだいすう【ブール代数】
論理計算を公理化し、形式化した数学的体系。ブールによって完成された。

出典:三省堂
(C) Sanseido Co.,Ltd. 編者:松村明 編 発行者:株式会社 三省堂 ※ 書籍版『大辞林第三版』の図表・付録は収録させておりません。 ※ それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。

ブリタニカ国際大百科事典 小項目事典

ブール代数
ブールだいすう
ブール束」のページをご覧ください

出典:ブリタニカ国際大百科事典 小項目事典
Copyright (c) 2014 Britannica Japan Co., Ltd. All rights reserved.
それぞれの記述は執筆時点でのもので、常に最新の内容であることを保証するものではありません。

日本大百科全書(ニッポニカ)

ブール代数
ぶーるだいすう
イギリスの数学者G・ブールが論理計算の場として導入した代数系で、論理学、集合論への適用だけでなく、コンピュータの回路設計など、その応用範囲は広い。理論は二値の述語論理で、論理式全体の集合をFとし、任意の論理式pとqについて、p=qとはp≡q(pとqは同値)が成り立つこととする。三つの論理演算p∨q(pあるいはq)、p∧q(pかつq)、~p(pの否定)を考える。このとき次の式が成り立つ。
(1) p∨q=q∨p p∧q=q∧p
(2) p∨(q∨r)=(p∨q)∨r
    p∧(q∧r)=(p∧q)∧r
(3) (p∨q)∧q=q
     (p∧q)∨q=q
(4) (p∨q)∧r
    =(p∧r)∨(q∧r)
    (p∧q)∨r
    =(p∨r)∧(q∨r)
論理式pとqのいかんにかかわらず、
   p∨~p=q∨~q,
   p∧~p=q∧~q
である。そこで、p∨~p,p∧~pをそれぞれ1(真)と0(偽)で表すと、
(5) p∨~p=1 p∧~p=0
である。これを一般化する。すなわち、集合Bは少なくとも二つの元1と0を含み、Bの二つの元xとyには、x∨y,x∧y,x*というBの元が定義されていて、次の条件を満たすとする。ここでx*はxの補元を表す。
(1) x∨y=y∨x x∧y=y∧x
(2) x∨(y∨r)=(x∨y)∨r
    x∧(y∧r)=(x∧y)∧r
(3) (x∨y)∧y=y
    (x∧y)∨y=y
(4) (x∨y)∧r
    =(x∧r)∨(y∧r)
    (x∧y)∨r
    =(x∨r)∧(y∨r)
(5) x∨x*=1 x∧x*=0
このときBをブール代数といい、二項演算x∨y,x∧yと一項演算x*をブール演算という。この条件(1)~(5)から、ド・モルガンの法則
  (x∨y)*=x*∧y*,(x∧y)*=x*∨y*
が導かれる。また、x≦yをx∧y=x(これはx∨y=yと同値)のこととすれば、Bは順序集合となり、x∨y(x∧y)は、xとyより大(小)なる最小(最大)の元になる。前の述語論理では、論理式pとqについて、p≦qはp→q(pならばq)のことである。
 次に集合計算について考える。集合Aの部分集合の全体をP(A)とする。P(A)の元x、yはともにAの部分集合である。これらのx、yに対して、x∨y,x∧y,x*をそれぞれ、xとyの和集合、共通集合、Aに対するxの補集合とすれば、それらはそれぞれAの部分集合となり、P(A)の元である。1としてAを、0として空集合をとれば、それらはまたP(A)の元である。そして、これらの演算はまた条件(1)~(5)を満たす。したがって、P(A)はこれらのブール演算に関してブール代数である。この場合、x≦yは、集合の包含関係xyと一致する。[西村敏男]

出典:小学館 日本大百科全書(ニッポニカ)
(C)Shogakukan Inc.
それぞれの解説は執筆時点のもので、常に最新の内容であることを保証するものではありません。

精選版 日本国語大辞典

ブール‐だいすう【ブール代数】
〘名〙 (ブールはBoole) 論理を記号化して得られた代数。一九世紀、イギリスの数学者ブール(George Boole)によって開発された。

出典:精選版 日本国語大辞典
(C)Shogakukan Inc.
それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。

ブール代数」の用語解説はコトバンクが提供しています。

ブール代数の関連情報

関連キーワード

ジョージHWブッシュ聖ゲオルギウス大聖堂バーソロミュームーアリットンアメリカ音楽イギリス映画A&P共和党(アメリカ合衆国)原子力航空母艦

他サービスで検索

「ブール代数」のスポンサー検索

(C)The Asahi Shimbun Company /VOYAGE GROUP, Inc. All rights reserved.
No reproduction or republication without written permission.