Rakuten infoseek

辞書

ガリレイ変換【ガリレイへんかん】

ブリタニカ国際大百科事典 小項目事典

ガリレイ変換
ガリレイへんかん
Galilei transformation
ニュートン力学において,2つの慣性座標系の間の座標変換式。慣性系 I に対し慣性系 I' が等速度 v で動くとき,両系の座標原点に関し任意の空間点Pの位置ベクトルを rr' ,両系ではかった時間を tt' とし,両座標原点が一致した時刻をそれぞれの時間の原点にとるとき ( tt'=0 ) ,両系の位置ベクトルおよび時間に対する次の変換関係式がガリレイ変換である。

r'=rvtt'=t

特に各慣性系に座標軸が互いに平行な直角座標系をとり,速度 v の方向は x 軸および x' 軸の方向であるとする。点Pの直角座標 xyz および x',y',z' は位置ベクトル r および r' の成分であるから,前式は座標の変換式 x'=xvty'=yz'=zt'=t と書ける。これをガリレイ変換ということが多い。ニュートンの運動方程式はこの変換に関し形を変えないので,両慣性系は力学的に同等であり,これをニュートン力学ではガリレイの相対性原理が成り立つという。これに反し,電磁気学の基礎方程式はガリレイ変換に対し形を変えるので,形を変えない座標変換式としてローレンツ変換が導き出された。ローレンツ変換は特殊相対性理論の基礎をなす座標変換式である。

出典:ブリタニカ国際大百科事典 小項目事典
Copyright (c) 2014 Britannica Japan Co., Ltd. All rights reserved.
それぞれの記述は執筆時点でのもので、常に最新の内容であることを保証するものではありません。

デジタル大辞泉

ガリレイ‐へんかん〔‐ヘンクワン〕【ガリレイ変換】
互いに静止または等速度運動をしている座標系の間の変換。この貫性系では時間の進み方は共通であると仮定され、ニュートン運動方程式は形を変えない。アインシュタインの特殊相対性原理におけるローレンツ変換に対していう。

出典:小学館
監修:松村明
編集委員:池上秋彦、金田弘、杉崎一雄、鈴木丹士郎、中嶋尚、林巨樹、飛田良文
編集協力:田中牧郎、曽根脩
(C)Shogakukan Inc.
それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。

法則の辞典

ガリレイ変換【Galilean transformation】
慣性系に属する二つの直交座標系 xyzx′,y′,z′ とが互いに一様な速度で運動しているとき,一方の座標を古典力学に従って他方の座標に変換する方式をいう.軸が互いに平行であり,後者が前者に対して x 軸(すなわち x′ 軸)方向に速度 v で運動しているとすれば,x′=xvty′=yz′=z となる.

出典:朝倉書店
Copyright (C) 2009 Asakura Publishing Co., Ltd. All rights reserved.
それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。

世界大百科事典 第2版

ガリレイへんかん【ガリレイ変換 Galilei transformation】
互いに一様な速度で運動している二つの慣性座標系K(x,y,z),K′(x′,y′,z′)を結びつける変換。いま,K′の原点はKに対し定速vで運動するとし,その運動する一定の方向を共通のx軸,x′軸の方向に選ぶ。K,K′の他の軸も両者で平行とし,時間t=0で両者の原点が一致していたとすると,変換の具体的な形は,x′=xvt,y′=y,z′=z,t′=tとなる。最後の式はニュートン力学では自明のこととされているが,ローレンツ変換との対比のためとくにつけ加えてある。

出典:株式会社平凡社
Copyright (c) Heibonsha Limited, Publishers, Tokyo. All rights reserved.

大辞林 第三版

ガリレイへんかん【ガリレイ変換】
一つの慣性系において記述された速度・加速度などの物理量や物理法則を、等速相対運動する他の慣性系における記述に移すこと。

出典:三省堂
(C) Sanseido Co.,Ltd. 編者:松村明 編 発行者:株式会社 三省堂 ※ 書籍版『大辞林第三版』の図表・付録は収録させておりません。 ※ それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。

日本大百科全書(ニッポニカ)

ガリレイ変換
がりれいへんかん
Galilean transformation
ニュートン力学の基本法則が成り立ち、互いに等速度運動をしている二つの座標系の間の関係式(変換)。ニュートンの第一法則は、物体はなんの作用も受けないならば、等速直線運動を続けると表される。これは慣性の法則ともよばれ、これが成り立つ座標系を慣性系という。互いに等速直線運動をする二つの座標系においては、力学の法則は同一である。このような慣性系は無限に多く存在し、それらが力学的に同等であることは、他の慣性系に対して特別な意味をもつ絶対基準系が存在しないことを意味する。これが、ニュートン力学(古典力学)におけるガリレイの相対性原理である。宇宙空間を高速で動く地表の構造物がなぜ安定に存在するかは説明を要するが、ガリレイ相対性原理はこれに対して論理的根拠を与えたのである。空間点の位置をxyz座標で記すK系とx'y'z'座標で記すK'系を二つの慣性系とする。この二つの系を関係づけるガリレイ変換は、たとえばK'がKx軸に沿って一定の速度Vで運動しているとき、同一の質点の位置座標の間で、
  x'=xVty'=yz'=z
と表される。この場合、時間経過は両方の慣性系で同じ、すなわち時間は変換で不変(t'=t)という絶対時間の仮定を置いている。
 Vの大きさが光速に比して無視できないくらいに大きくなると、前記の仮定は成り立たず、時間もまた変換を受ける。すなわち、ガリレイ変換は特殊相対性理論のローレンツ変換にとってかわられるべきものである。換言すれば、ガリレイ変換は、ローレンツ変換における相対速度Vが光速に比して非常に小さい極限として成り立つ。[玉垣良三]

出典:小学館 日本大百科全書(ニッポニカ)
(C)Shogakukan Inc.
それぞれの解説は執筆時点のもので、常に最新の内容であることを保証するものではありません。

精選版 日本国語大辞典

ガリレイ‐へんかん ‥ヘンクヮン【ガリレイ変換】
〘名〙 互いに一定の速度で動いている座標系の間で、ニュートンの運動の法則の形を変えないような変換。時間の進み方は共通であると仮定されている。

出典:精選版 日本国語大辞典
(C)Shogakukan Inc.
それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。

ガリレイ変換」の用語解説はコトバンクが提供しています。

ガリレイ変換の関連情報

他サービスで検索

「ガリレイ変換」のスポンサー検索

(C)The Asahi Shimbun Company /VOYAGE GROUP, Inc. All rights reserved.
No reproduction or republication without written permission.