Rakuten infoseek

辞書

エルランゲン目録【エルランゲンもくろく】

ブリタニカ国際大百科事典 小項目事典

エルランゲン目録
エルランゲンもくろく
Erlangen program
F.クラインは,エルランゲン大学教授就任 (1872) に際し,その講演のなかで,変換群概念がそれまで研究されてきた種々の幾何学を総合し統一する役割をもつと指摘した。これがのちに"Math. Ann. 47"に掲載され,『エルランゲン目録』と呼ばれるようになった。その基本となる考えは,「一つの幾何学は,一つの変換群のもとで不変に保たれる諸性質を研究する,不変式に関する理論である」というものである。たとえば,ユークリッド幾何学は運動群によって不変な性質を,アフィン幾何学はアフィン変換群によって不変な性質を研究する幾何学といえる。この考え方は新しい幾何学の発見にも,多大の影響を与えた。

出典:ブリタニカ国際大百科事典 小項目事典
Copyright (c) 2014 Britannica Japan Co., Ltd. All rights reserved.
それぞれの記述は執筆時点でのもので、常に最新の内容であることを保証するものではありません。

日本大百科全書(ニッポニカ)

エルランゲン目録
えるらんげんもくろく
1872年、ドイツの数学者クラインがエルランゲン大学哲学部教授に就任するに際して発表した研究プログラム。クラインは「最近の幾何学研究に関する比較考察」と題するこの論文のなかで、いろいろな幾何学が変換群の立場から統一的にとらえられることを示した。すなわち、空間をそれ自身に写す変換からなる一つの集合が群をなすとき、空間の図形に関する定理のうちで、この群のすべての変換のもとで変わらないようなものの集まりを、この群に従属する幾何学とした。たとえば、われわれにはもっともなじみの深いユークリッド幾何学(ピタゴラスの定理などを含む)は合同変換群に従属し、アフィン幾何学(デザルグの定理などを含む)はアフィン変換群に従属し、射影幾何学(パスカルの定理などを含む)は射影変換群に従属する。一つの変換群に従属する幾何学と、その部分群に従属する幾何学とでは、後者のほうが扱う図形の種類が多い。たとえば、アフィン幾何学では、ユークリッド幾何学とは違って、三角形はすべて同じものとみなされる。また、前者で成り立つ定理は後者でも成り立つ。同様に、いま考えた空間のかわりに球面を考えれば、球面上のさまざまな幾何学が得られる。たとえば、変換群として三次直交変換群(楕円(だえん)的変換群ともいう)をとれば、これに従属する幾何学は球面幾何学(楕円的非ユークリッド幾何学ともいう)である。類似の方法で、球面のかわりに二葉双曲面の1枚を考えると、双曲的変換群に従属する双曲的非ユークリッド幾何学(ボヤイとロバチェフスキーの非ユークリッド幾何学ともいう)が得られる。
 このような見地からクラインは、当時までに別々に研究されてきたいろいろな幾何学を包括しながら、それらの間の相互関係や位置づけを明確にして、幾何学の進むべき新しい一つの方向を打ち出した。現在リーマン幾何学とよばれている幾何学は、1916年にアインシュタインが一般相対性理論に応用して以来重要視されてきているが、これは一般には恒等写像以外の変換群をもたないような集合を研究対象とするために、エルランゲンの目録には登場しない幾何学の一つである。したがって、同目録は幾何学に対して万能ではなくなっているが、彼の幾何学に対する深い思想はさまざまな形で現代幾何学のなかでも息づいている。[高木亮一]

出典:小学館 日本大百科全書(ニッポニカ)
(C)Shogakukan Inc.
それぞれの解説は執筆時点のもので、常に最新の内容であることを保証するものではありません。

エルランゲン目録」の用語解説はコトバンクが提供しています。

エルランゲン目録の関連情報

他サービスで検索

(C)The Asahi Shimbun Company /VOYAGE MARKETING, Inc. All rights reserved.
No reproduction or republication without written permission.